[I’ve posted a follow-up here: Heteroscedasticity in the Residuals?]

When applying statistics to find a “best fit” between your observation and reality, always ask yourself “best among what?”

The CERN result about faster-than-light neutrinos is based on a best fit. If the authors were too restrictive in their meaning of “among what,” they might have missed figuring out what really happened. And what might have really happened was that the neutrinos they detected had not traveled faster than light.

The data for this experiment was, as usual, a bunch of numbers. These numbers were precisely-measured (by portable atomic clocks and other very cool techniques) arrival times of neutrinos at a detector. The neutrinos were created by shooting a beam of protons into a long tube of graphite. This produced neutrinos, some of which were subsequently observed by a detector hundreds of miles away.

Over the course of a few years, the folks at CERN shot a total of about 100,000,000,000,000,000,000 protons into the tube; they observed about 15,000 neutrinos. The protons were fired in pulses, each pulse lasting about 10 microseconds.

A careful statistical analysis of the data, the authors report, indicates that the neutrinos traveled about 0.0025% faster than the speed of light. Whooooooosh! Furthermore, because the experiment looked at a lot of neutrinos and the results were consistent, the experiment indicates that in all likelihood the true speed of neutrinos was very close to 0.0025% faster than the speed of light, and it was almost without doubt at least faster.

If the experimental design and statistical analysis are correct (and the authors are aware they might not be, though they worked hard to make them correct), this is one of the great experiments of all time.

So far, I haven’t read much scrutiny of the statistical analysis pertaining to the question of “among what?” But Jon Butterworth of The Guardian raised one issue, and I have a similar one.

Look at the graph below, from the preprint.

Screen shot 2011-09-24 at 16.23.45

The statistical analysis of the data was designed to measure how far to slide the red curve (the summed photon waveform) left or right so that the black data points (the neutron observation data) fit it most closely.

The experiment didn’t detect individual neutrinos at the beginning of the trip. The neutrons were produced by 10-microsecond proton bursts, and neutrinos were expected to appear in 10-microsecond bursts at the other end. The time between the bursts, then, should indicate how fast the individual neutrinos traveled.

To get the time between the bursts, slide the graphs back and forth until they align as closely as they can, and then compare the (atomic) clock times at the beginnings and ends of the bursts.

For this to give the right travel time, and more importantly, to be able to evaluate the statistical uncertainty, the researchers appear to have assumed that the shape of the proton burst upstream of the graphite rod exactly matched the shape of the neutrino burst at the detector (once adjusted for the fact that the detector sees about one neutrino for each 10 million billion or so protons in the initial burst).

Why should the shapes match exactly? If God jiggled the detector right when the neutrinos arrived, for example, the shapes might not match. More scientifically plausibly, though, at least to this somewhat-naïve-about-particle-physics mathematician, what if the protons at the beginning of the burst were more likely to create detectable neutrinos than those at the end of the burst? Maybe the graphite changes properties slightly during the burst. [Update: It does, but whether that might affect the result, I don’t know.] Or maybe the protons are less energetic at the end of the bursts because there’s more proton traffic.

The authors don’t tell us why they assume the shapes match exactly. There might be good theory and previous experimental results to support the assumption, but if so, it’s not mentioned in the paper. The authors do remark that a given “neutrino detected by OPERA” might have been produced by “any proton in the 10.5 microsecond extraction time.” But they don’t say “equally likely by any proton.”

If protons generated early in the burst were slightly more likely to yield detectable neutrinos, then the data points at the left of the figure should be scaled down and those at the left scaled up, if the observational data is expected to indicate the actual proton count across the burst.

If that’s the case, then the adjusted data might not have to be shifted quite so far to best match the red curve. And the calculated speed would be different.

Whether this would make enough of a difference to bring the speed below light-speed, I don’t know and can’t guess from what’s in the preprint. And of course, there may be good reasons for same-shape bursts to be a sound assumption.

[Disclaimer: I’m a mathematician, not a statistician or a physicist.]